
An Introduction to Trilinos

Michael A. Heroux
Solvers Project Leader
Sandia National Labs

ACTS Workshop October 11, 2001

Outline

• Preliminary mention of “class classifications.”
• Overview of Trilinos components.
• Using Epetra/AztecOO for solving linear systems.
• Epetra base and utility classes.
• Briefly: Epetra Import/Export Capabilities.
• Introduction to TSF Abstract Class Hierarchy.
• Status and availability of Trilinos components.

Class Classifications:
Interface vs. Implementation

• Modern languages (C++, Java, F95, C#?) provide
powerful capabilities to separate:
– Interface: What should be done with whom.
– Implementation: How it is done.

• Concept is not new. Example: BLAS.
– Single Fortran interface.

• Reference Fortran implementation.
• Numerous assembly language implementations.
• C implementation in ATLAS.

– However, Non-Fortran implementations not
portable.

Class Classifications
• Abstract class: Interface only (just header files).

– Cannot construct them.
– Can be passed in as arguments.
– Can call methods from this class.
– Methods tend to be generic, conceptual in nature.
– Bottom line: User focused, attention to the big picture.

• Concrete class: Interface and code.
– Can be constructed, passed in, methods used.
– Provide specific functionality and interfaces, powerful capabilities.
– Bottom line: Internally focused, attention to the detailed picture.

• Adaptor class: Glue to combine abstract and concrete.
– Combines the best of both class types:

• Abstract class interface.
• Capabilities of concrete class.

– Hides the implementation details from abstract class user.
– Support multiple concrete implementations via multiple adaptors.

Trilinos Classes
• Trilinos provides all three types of classes:

– Abstract:
• Equation Solver Interface (ESI)

– de facto standard for abstract linear solver interfaces.
• Finite Element Interface (FEI)

– Commonly used interface for finite element codes.
• Trilinos Solver Framework (TSF)

– Extensive, multi-purpose abstract class hierarchy.

– Concrete:
• Many, listed next…

– Adaptor:
• Many.
• Implement each class of ESI, FEI and TSF using one or

more appropriate concrete classes.
• Implement TSF using third party libraries, e.g., PETSc,

SuperLU, etc.

• Trilinos1 is Sandia’s multifaceted solver project.
• Encompasses efforts in:

– Linear solvers.
– Eigen solvers.
– Nonlinear and time-dependent solvers.
– Others.

• Provides a common framework for current and future solver
projects at Sandia.

• Specifically provides:
– A common set of concrete linear algebra objects for solver

development and application interfaces.
– A consistent set of solver interfaces via abstract classes (API) .

What is Trilinos?

1Trilinos, pronounced tree-lee-nose, is a Greek word that, loosely
translated, means a “string of pearls”.

The Trilinos Solver Framework (TSF)

• TSF specifies a set of abstract classes for:
– ParameterList (simple database).
– Multivector (generalization of vector).
– Operator. (base transformation class).
– Problem (primary control class).

– And specializations of these classes.

• These interfaces prescribe:
– What these objects should do.
– How they are related.

• But do not specify the implementation.

Trilinos Concrete Solver
Components

•Linear systems:
– Multi-level preconditioners (ML: Tuminaro, Hu, Howle).
– Robust algebraic preconditioners (IFPACK: Heroux).
– Complex solvers (Komplex: Heroux, Day).
– Block iterative methods (BGMRES, BLCG: Barth, Lehoucq, Heroux).
– Object-oriented C++ AZTEC (AztecOO: Heroux).

•Eigen systems:
– Scalable generalized eigensolver (ANASAZI: Lehoucq).

•Nonlinear systems:
– Suite of nonlinear methods (NLS: Pawlowski, Kolda, Shadid).

Trilinos Concrete Support Component: Petra
Petra1 provides distributed matrix and vector services:

Construction of and operations with matrices, vectors and graphs.
Parallel redistribution of all these objects (including a Zoltan interface).
All Trilinos solver components understand and use Petra matrices and vectors.

Three version under development:
• Epetra (Essential Petra):

– Under development for the past 18 months.
– Restricted to real, double precision arithmetic.
– Uses stable core subset of C++.
– Interfaces accessible to C and Fortran users.

• Tpetra (Templated Petra):
– Next generation C++ version.
– Templated scalar fields (and perhaps ordinal fields).
– Uses namespaces, and STL: Improved usability/efficiency.

• Jpetra (Java Petra):
– Pure Java. Completely portable to any JVM.
– Interfaces with Java versions of MPI, LAPACK and BLAS.

1Petra is Greek for “foundation”.

Epetra/AztecOO

• Much of the remaining talk focuses on
Epetra/AztecOO.

• Reasons:
– These two components will be released shortly.
– These components are closely related to Aztec:

• Should be of interest to current Aztec users.
– Investment in Epetra is:

• Primary hurdle to using any Trilinos component.
• Easily leveraged to use other Trilinos components as

they are released.
• Possibly useful independent of the rest of Trilinos.

Solving Linear Systems via Epetra/AztecOO

•Goal:

Solve Ax = b, using Epetra/AztecOO.

• Proceed step-by-step through the following classes:
– Comm: Defines parallel machine.
– Map: Defines data distribution.
– Vector: Defines RHS/LHS vectors.
– Matrix: Defines Linear Operator
– Problem: Combines pieces to define linear problem.
– AztecOO: Solves linear problem.

Epetra Details

• Epetra contains constructors and utility routines
for:
– Distributed dense multivectors and vectors.
– Local replicated multivectors, vectors.
– Distributed Sparse Graphs and Matrices.

• Written in C++.
• C/Fortran wrapper functions provide access to

library.

Epetra User Class Categories

– Parallel Machine: Comm, SerialComm, MpiComm, MpiSmpComm

– Data Layout: Map, BlockMap, LocalMap

– Vectors: Vector, MultiVector
– Graphs: CrsGraph
– Sparse Matrices: RowMatrix, CrsMatrix, VbrMatrix

– Aggregates: LinearProblem

– Utilities: Time, Flops

– Redistribution: Import, Export, LbGraph, LbMatrix

– Dense Matrices: DenseMatrix, DenseVector, BLAS, LAPACK,
SimpleSerialDenseSolver, HardSerialDenseSolver

– Solver: AztecOO (not part of Epetra, but related).

Epetra Communication Classes

• Epetra_Comm is a pure virtual class:
– Has no executable code: Interfaces only.
– Encapsulates behavior and attributes of the parallel machine.
– Defines interfaces for basic services such as:

• Collective communications.
• Gather/scatter capabilities.

– Allows multiple parallel machine implementations.

• Implementation details of parallel machine confined to
Comm classes.

• In particular, rest of Epetra has no dependence on MPI.

Comm Methods
•Barrier() const=0 [pure virtual]
•Broadcast(double *MyVals, int Count, int Root) const=0 [pure virtual]
•Broadcast(int *MyVals, int Count, int Root) const=0 [pure virtual]
•CreateDistributor() const=0 [pure virtual]
•GatherAll(double *MyVals, double *AllVals, int Count) const=0 [pure virtual]
•GatherAll(int *MyVals, int *AllVals, int Count) const=0 [pure virtual]
•MaxAll(double *PartialMaxs, double *GlobalMaxs, int Count) const=0 [pure virtual]
•MaxAll(int *PartialMaxs, int *GlobalMaxs, int Count) const=0 [pure virtual]
•MinAll(double *PartialMins, double *GlobalMins, int Count) const=0 [pure virtual]
•MinAll(int *PartialMins, int *GlobalMins, int Count) const=0 [pure virtual]
•MyPID() const=0 [pure virtual]
•NumProc() const=0 [pure virtual]
•Print(ostream &os) const=0 [pure virtual]
•ScanSum(double *MyVals, double *ScanSums, int Count) const=0 [pure virtual]
•ScanSum(int *MyVals, int *ScanSums, int Count) const=0 [pure virtual]
•SumAll(double *PartialSums, double *GlobalSums, int Count) const=0 [pure virtual]
•SumAll(int *PartialSums, int *GlobalSums, int Count) const=0 [pure virtual]
•~Epetra_Comm() [inline, virtual]

Comm Implementations

Three current implementations of Petra_Comm:
– Epetra_SerialComm:

• Allows easy simultaneous support of serial and parallel version of user code.

– Epetra_MpiComm:
• OO wrapping of C MPI interface.

– Epetra_MpiSmpComm:
• Allows definition/use of shared memory multiprocessor nodes.

– PVM version in the future.

Map Classes
• Epetra maps prescribe the layout of distributed objects

across the parallel machine.
• Typical map: 99 elements, 4 MPI processes could look like:

– Number of elements = 25 on PE 0 through 2,
= 24 on PE 3.

– GlobalElementList = {0, 1, 2, …, 24} on PE 0,
= {25, 26, …, 49} on PE 1. … etc.

• Funky Map: 10 elements, 3 MPI processes could look like:
– Number of elements = 6 on PE 0,

= 4 on PE 1,
= 0 on PE 2.

– GlobalElementList = {22, 3, 5, 2, 99, 54} on PE 0,
= { 5, 10, 12, 24} on PE 1,
= {} on PE 2.

Note: Global elements IDs (GIDs) are only labels:
– Need not be contiguous range on a processor.
– Need not be uniquely assigned to processors.
– Funky map is not unreasonable, given auto-generated meshes, etc.
– Use of a “Directory” facilitates arbitrary GID support.

Epetra Map Collaboration Diagram &
Inheritance Graph

Notes:
1. Epetra_Object is base class for all concrete Epetra classes:

Has labeling and ostream methods.
Maintains definitions of global constants.

2. BlockMap is the base map class.
3. Maps have Epetra_Directory to keep track of global ID

distribution.

Types of Epetra Maps

• Two basic characteristic attributes:

–Local or not:
• A local map creates and maintains replicated local objects:

– Object is the same across all processors.
– Useful for some algorithms, Hessenberg matrix in GMRES,

block dot products, etc.
• Non-local creates distributed global objects:

– Object is distributed across all processors. This is what we
think of as a “standard” map.

–Block or not:
• Block supports variable weight per element.
• Primarily used for sparse matrix whose entries are dense

matrices.

BlockMap Ctors and Dtors
Epetra_BlockMap (int NumGlobalElements, int ElementSize, int IndexBase,

const Epetra_Comm &Comm)
Constructor for a Epetra-defined uniform linear distribution of constant block size elements.

Epetra_BlockMap (int NumGlobalElements, int NumMyElements, int ElementSize, int IndexBase,
const Epetra_Comm &Comm)

Constructor for a user-defined linear distribution of constant block size elements.

Epetra_BlockMap (int NumGlobalElements, int NumMyElements, int *MyGlobalElements,
int ElementSize, int IndexBase, const Epetra_Comm &Comm)

Constructor for a user-defined arbitrary distribution of constant block size elements.

Epetra_BlockMap (int NumGlobalElements, int NumMyElements, int *MyGlobalElements,
int *ElementSizeList, int IndexBase, const Epetra_Comm &Comm)

Constructor for a user-defined arbitrary distribution of variable block size elements.

Epetra_BlockMap (const Epetra_BlockMap &map)
Copy constructor.

virtual ~Epetra_BlockMap (void)
Destructor.

Some Map Methods
Local/Global ID accessor functions

int RemoteIDList (int NumIDs, const int *GIDList, int *PIDList, int *LIDList) const
Returns the processor IDs and corresponding local index value for a given list of global indices.

int LID (int GID) const Returns local ID of global ID, return -1 if not on this processor.

int GID (int LID) const Returns global ID of local ID, return IndexBase-1 if GID not on this proc.

Size and dimension accessor functions

int NumGlobalElements () const Number of elements across all processors.

int NumMyElements () const Number of elements on the calling processor.

int MyGlobalElements (int *MyGlobalElementList) const
Puts list of global elements on this processor into the user-provided array.

int IndexBase () const Index base for this map.

Epetra Vector Class

• Supports construction and manipulation of
vectors.
– Distributed global vectors.
– Replicated local vectors.

• Can perform common vector operations:
– Dot products, vector scalings and norms.
– Fill with random values.

• Used with the Epetra Matrix classes for matrix-
vector multiplication.

• Use in a parallel or serial environment is mostly
transparent.

• Specialization of the Epetra MultiVector class.

Epetra MultiVector Class

• A multivector is a collection of one or more
vectors with the same memory layout (map).

• Useful for block algorithms, multiple RHS,
replicated local computations.

• A generalization of a 2D array:
– If the memory stride between vectors is constant, then

multivector is equivalent to 2D Fortran array.
– Can wrap calls to BLAS, LAPACK in this class.

• Provides most of the implementation for the
Epetra Vector class.

Epetra Vector/MultiVector Inheritance Graph

Notes:
1. Vector is a specialization of MultiVector.

A multivector with one vector.
2. MultiVector isa:

a) Distributed Object.
Data spread (or replicated) across
processors.

b) Computational Object.
Floating point operations occur
(and will be recorded if user
desires).

c) BLAS Object.
Uses BLAS kernels for fast
computations.

d) More on common base classes later…

Epetra CrsGraph Class

• Provides “skeletal” information for both sparse
matrix classes (CRS and VBR).

• Allows a priori construction of skeleton that can be
used by multiple matrices and reused in future.

• Provides graph information used by some load
balancing tools.

• Exists in one of two states:
– Global index space.
– Local index space.

Epetra Matrix Classes

• Support construction and manipulation of:
– Row based (Epetra_CrsMatrix) and
– Block row based (Epetra_VbrMatrix) matrices.

• Constructors allow:
– row-by-row or entry-by-entry construction.
– Injection, replacement or sum-into entry capabilities.

• Supports common matrix operations:
– Scaling.
– Norms.
– Matrix-vector multiplication.
– Matrix-multivector multiplication.

Matrix Class Inheritance Details

CrsMatrix and VbrMatrix inherit from:
• Distributed Object: How data is spread across machine.
• Computational Object: Performs FLOPS.
• BLAS: Use BLAS kernels.
• RowMatrix: An object from either class has a common

row access interface (used by AztecOO).

LinearProblem Class

• A linear problem is defined by:
– Matrix A : An Epetra_RowMatrix object.

(but really a CrsMatrix or VbrMatrix
object.)

– Vectors x, b : Vector objects.
• To call AztecOO, define a LinearProblem:

– Constructed from A, x and b.
– Once defined, can:

• Scale the problem (explicit preconditioning).
• Precondition it (implicitly).
• Change x and b.

LinearProblem Collaboration Diagram

Some LinearProblem Methods

Epetra_LinearProblem (Epetra_RowMatrix *A, Epetra_MultiVector *X, Epetra_MultiVector *B)
Epetra_LinearProblem Constructor.

void SetOperator (Epetra_RowMatrix *A)
Set Operator A of linear problem AX = B.

void SetLHS (Epetra_MultiVector *X)
Set left-hand-side X of linear problem AX = B.

void SetRHS (Epetra_MultiVector *B)
Set right-hand-side B of linear problem AX = B.

int CheckInput () const
Check input parameters for size consistency.

int LeftScale (const Epetra_Vector &D)
Perform left scaling of a linear problem.

int RightScale (const Epetra_Vector &D)
Perform right scaling of a linear problem.

AztecOO

• Aztec is the workhorse solver at Sandia:
– Extracted from the MPSalsa reacting flow code.
– Installed in dozens of Sandia apps.
– 800+ external licenses.

• AztecOO leverages the investment in Aztec:
– Uses Aztec iterative methods and preconditioners.

• AztecOO improves on Aztec by:
– Using Epetra objects for defining matrix and RHS.
– Providing more preconditioners/scalings.
– Using C++ class design to enable more sophisticated

use.
• AztecOO interfaces allows:

– Continued use of Aztec for functionality.
– Introduction of new solver capabilities outside of Aztec.

Some AztecOO Methods
AztecOO (const Epetra_LinearProblem &problem) AztecOO Constructor.

int SetAztecDefaults () AztecOO function to restore default options/parameter settings.

int SetAztecOption (int option, int value) AztecOO option setting function.

int SetAztecParam (int param, double value) AztecOO param setting function.

int Iterate (int MaxIters, double Tolerance) AztecOO iteration function.

int NumIters () const Returns the total number of iterations performed on this problem.

double TrueResidual () const Returns the true unscaled residual for this problem.

double ScaledResidual () const Returns the true scaled residual for this problem.

A Simple Epetra/AztecOO Problem
// Header files omitted…
int main(int argc, char *argv[]) {

MPI_Init(&argc,&argv); // Initialize MPI
Epetra_MpiComm Comm(MPI_COMM_WORLD);

// ***** Create x and b vectors *****
Epetra_Vector x(Map);
Epetra_Vector b(Map);
b.Random(); // Fill RHS with random #s

// ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
if (RowPlus1!=NumGlobalElements)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A.TransformToLocal(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****

int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************
cout << "Solver performed " << solver.NumIters()

<< " iterations." << endl
<< "Norm of true residual = "
<< solver.TrueResidual()
<< endl;

MPI_Finalize() ;
return 0;

}

// ***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);

Additional Epetra Classes: Utility and Base

• This completes the description of the basic user-
oriented Epetra classes.

• Next we discuss some of the base and utility
classes.

Epetra DistObject Base Class
• Epetra has 5 user-oriented

distributed object classes:
– Vector
– MultiVector
– CrsGraph
– CrsMatrix
– VbrMatrix

• DistObject is a base class for all the above:
– Construction of DistObject requires a Map (or BlockMap or LocalMap).
– Has concrete methods for parallel data redistribution of an object.
– Has virtual Pack/Unpack method that each derived class must implement.

– DistObject advantages:
– Minimized redundant code.
– Facilitates incorporation of other distributed objects in future.

Epetra_DistObject Import/Export Methods

int Import (const Epetra_DistObject &A, const Epetra_Import &Importer, Epetra_CombineMode CombineMode)
Imports an Epetra_DistObject using the Epetra_Import object.

int Import (const Epetra_DistObject &A, const Epetra_Export &Exporter, Epetra_CombineMode CombineMode)
Imports an Epetra_DistObject using the Epetra_Export object.

int Export (const Epetra_DistObject &A, const Epetra_Import &Importer, Epetra_CombineMode CombineMode)
Exports an Epetra_DistObject using the Epetra_Import object.

int Export (const Epetra_DistObject &A, const Epetra_Export &Exporter, Epetra_CombineMode CombineMode)
Exports an Epetra_DistObject using the Epetra_Export object.

Epetra_DistObject Virtual Methods

virtual int CheckSizes (const Epetra_DistObject &Source)=0
Allows the source and target (this) objects to be compared for compatibility, return nonzero if not.

virtual int CopyAndPermute (const Epetra_DistObject &Source, int NumSameIDs,
int NumPermuteIDs, int *PermuteToLIDs, int *PermuteFromLIDs)=0

Perform ID copies and permutations that are on processor.

virtual int PackAndPrepare (const Epetra_DistObject &Source, int NumExportIDs, int *ExportLIDs,
int Nsend, int Nrecv, int &LenExports, char *&Exports, int &LenImports,
char *&Imports, int &SizeOfPacket, Epetra_Distributor &Distor)=0

Perform any packing or preparation required for call to DoTransfer().

virtual int UnpackAndCombine (const Epetra_DistObject &Source, int NumImportIDs, int *ImportLIDs,
char *Imports, int &SizeOfPacket, Epetra_Distributor &Distor,
Epetra_CombineMode CombineMode)=0

Perform any unpacking and combining after call to DoTransfer().

Epetra_Time and Epetra_Flops

• All Epetra computational classes count floating point operations
(FLOPS):

– FLOPS are associated with the this object.
– Op counts are serial counts, that is, independent of number of processors.
– Each computational class have a FLOPS() method that can be queried for

the flop count of an object:

Epetra_Vector V(map);
Epetra_Flops counter;
V.SetFlopCounter(counter);
V.Random();
V.Norm2();
double v_flops = V.Flops(); // v_flops should = len of V

Epetra_CompObject Class
• Epetra has 8 user-oriented

distributed object classes:
– Vector
– MultiVector
– CrsMatrix
– VbrMatrix
– SerialDenseVector
– SerialDenseMatrix
– SimpleSerialDenseSolver, HardSerialDenseSolver

• CompObject is a base class for all the above:
– Trivial constructor.
– Manages pointer to an Epetra_Flops counter object.
– Allows a computational object to donate its FLOPS to a specified counter.
– Any number of objects can be associated with a single counter object.

Epetra Serial Dense
Matrix and Vector Classes

Epetra provides two types of serial dense classes:
• (Thin)

– Epetra_BLAS, Epetra_LAPACK:
• Provide thin wrappers to BLAS and LAPACK routines.
• A single interface to any BLAS routine (There is one call to DGEMM in all of

Epetra).
• A single method for all precision types. (GEMM covers SGEMM, DGEMM,

CGEMM, ZGEMM) Helps with templates.
• Inheritable: Any class can be a BLAS, LAPACK class.

• (OO)
– Epetra_SerialDenseMatrix, Epetra_SerialDenseVector:

• Fairly light-weight OO Dense matrix and vector classes.
– Epetra_SimpleSerialDenseSolver:

• Straight-forward LU solver.

– Epetra_HardSerialDenseSolver:
• Careful implementation that provide OO access to robust scaling and

factorization techniques in LAPACK.

– SPD versions of above.

Parallel Data Redistribution

• Petra vectors, multivectors, graphs and matrices are distributed via one
of the map objects.

• A map is basically a partitioning of a list of global IDs:
– IDs are simply labels, no need to use contiguous values (Directory class

handles details for general ID lists).
– No a priori restriction on replicated IDs.

• Given:
– A source map.
– A set of vectors, multivectors, graphs and matrices (or other packable

objects) based on source map.
• Redistribution is performed by:

– Specifying a target map with a new distribution of the global IDs.
– Creating Import or Export object using the source and target maps.

– Creating vectors, multivectors, graphs and matrices that are
redistributed (to target map layout) using the
Import/Export object.

Import vs. Export

• Import (Export) means calling processor knows
what it wants to receive (send).

• Distinction between Import/Export is important to
user, almost identical in implementation.

• Import (Export) objects can be used to do an
Export (Import) as a reverse operation.

• When mapping is bijective (1-to-1 and onto),
either Import or Export is appropriate.

Sports Interview Component Model

Linear Solver Component Model

Any App
Any Explicit

Scaling

Any
Preconditioner

0Ax b=

Linear
Problem:

0MAx Mb= %% %

Preconditioned
Problem:

Any
Iterative
Solver

Un-
Scaling

0Ax b= %% %

Scaled
Problem:

nx x←% %

Scaled
Solution:

x x← %

Unscaled
Solution:

The Trilinos Solver Framework (TSF)

• TSF specifies a set of abstract classes for:
– ParameterList (simple database).
– Multivector (generalization of vector).
– Operator. (base transformation class).
– Problem (primary control class).

– And specializations of these classes.

• These interfaces prescribe:
– What these objects should do.
– How they are related.

• But do not specify the implementation.

TSF Abstract Class Hierarchy

• TSF::ParameterList – Encapsulates parameter information for solvers.

• TSF::MultiVector – Abstract multivector class.
– TSF::Vector – Specialization of MultiVector.

• TSF::Operator – Most basic of transformation classes.
• TSF::LinOperator – Specialization of Operator.

• TSF::Matrix – Specialization of LinOperator.
• TSF::RowAccessMatrix – Specialization of Matrix.

• TSF::Preconditioner
• TSF::Scale

• TSF::Solver
• TSF::LinSolver

– TSF::IterLinSolver

• TSF::Problem – Encapsulates all required info to define problem.
• TSF::LinProblem

• TSF::PrecLinProblem
• TSF::EigenProblem
• TSF::NonLinProblem

Abstract Interfaces

Specific App: GOMA
Any Explicit

Scaling

0Ax b=

TSF::Scale
Object Interface

• GOMA can use TSF::Scale to define scaling without specifying implementation.

• However, we need real code to make this work…

Concrete and Adaptor Classes
• Essential Epetra (Epetra) is a library of concrete C++ classes.
• Several Epetra classes provide a variety of scaling algorithms:

Real, working code.
Parallel, distributed memory.
Numerically robust.

• To use Epetra with TSF::Scale:
• Write an adaptor class: Epetra_TSF::Scale.

• Note: An Epetra_TSF::Scale object
• isa TSF::Scale object (implements TSF::Scale interface).
• isa Epetra object (calls Epetra methods).

• Note: PETSc, LAPACK, others also provide scaling (equilibration)
techniques.

Any Explicit
Scaling

TSF::Scale
Object Interface

Epetra_TSF::Scale
Object

Epetra_TSF::Scale
Object

Epetra_TSF Adaptor Class

Specific App: GOMA

0Ax b=

• The Epetra_TSF adaptor class:
• Uses Epetra for functionality.
• Satisfies the interface needs of Goma.
• Requires only a relinking of Goma (or a change in the Factory options).

• Using LAPACK or PETSc would require a similar (small) amount of work to
integrate into TSF.

Trilinos Summary
Trilinos provides a flexible model for delivering solver capabilities:
• TSF Abstract Classes:

– Provides a single interface for applications.
– Gives apps access to any solver implementing TSF.
– Allows algorithm developers to use generic programming.

• Concrete component class:
– Epetra, AztecOO, Anasazi, IFPACK, ML, etc.

• Adaptor classes:
– We always have a default TSF implementation using our

concrete classes (Epetra, etc.).
– Can easily integrate new solver components with minimal code

development.

Trilinos and the Outside World
• ESI (Equation Solver Interface):

de facto standard solver interface.
Epetra and AztecOO provide the first ESI-compliant implementation
(thanks to Alan Williams).

• TAO (Toolkit for Advanced Optimization):
Argonne optimization package.

Epetra/AztecOO are being used (via ESI interface) for TAO solver
services, along with PETSc implementation of ESI.

• CCA (Common Component Architecture):
Community effort to develop scientific SW components.

Epetra/AztecOO to become a CCA solver component.
• Public Release of Trilinos/Epetra:

We will release Trilinos/Epetra this fall/winter.
Using LGPL for licensing.
ML, IFPACK , AztecOO, Komplex, Anasazi , NLS will be (or are) going
through the same release process.

